Senin, 02 November 2009

GERAK MELINGKAR (gerak rotasi)

Gerak Melingkar Beraturan
Gerak Melingkar Beraturan


Ketika sebuah benda bergerak membentuk suatu lingkaran dengan laju tetap maka benda tersebut dikatakan melakukan Gerak Melingkar Beraturan alias GMB.

Dapatkah kita mengatakan bahwa GMB merupakan gerakan yang memiliki kecepatan linear tetap ? Misalnya sebuah benda melakukan Gerak Melingkar Beraturan, seperti yang tampak pada gambar di bawah. Arah putaran benda searah dengan putaran jarum jam. bagaimana dengan vektor kecepatannya ? seperti yang terlihat pada gambar, arah kecepatan linear/tangensial di titik A, B dan C berbeda. Dengan demikian kecepatan pada GMB selalu berubah (ingat perbedaan antara kelajuan dan kecepatan, kelajuan adalah besaran skalar sedangkan kecepatan adalah besaran vektor yang memiliki besar/nilai dan arah) sehingga kita tidak dapat mengatakan kecepatan linear pada GMB tetap.

Pada gerak melingkar beraturan, besar kecepatan linear v tetap, karenanya besar kecepatan sudut juga tetap.

Jika arah kecepatan linear alias kecepatan tangensial selalu berubah, bagaimana dengan arah kecepatan sudut ? arah kecepatan sudut sama dengan arah putaran partikel, untuk contoh di atas arah kecepatan sudut searah dengan arah putaran jarum jam. Karena besar maupun arah kecepatan sudut tetap maka besaran vektor yang tetap pada GMB adalah kecepatan sudut. Dengan demikian, kita bisa menyatakan bahwa GMB merupakan gerak benda yang memiliki kecepatan sudut tetap.

Pada GMB, kecepatan sudut selalu tetap (baik besar maupun arahnya). Karena kecepatan sudut tetap, maka perubahan kecepatan sudut atau percepatan sudut bernilai nol. Percepatan sudut memiliki hubungan dengan percepatan tangensial, sesuai dengan persamaan

Karena percepatan sudut dalam GMB bernilai nol, maka percepatan linear juga bernilai nol. Jika demikian, apakah tidak ada percepatan dalam Gerak Melingkar Beraturan (GMB) ?

Pada GMB tidak ada komponen percepatan linear terhadap lintasan, karena jika ada maka lajunya akan berubah. Karena percepatan linear alias tangensial memiliki hubungan dengan percepatan sudut, maka percepatan sudut juga tidak ada dalam GMB. Yang ada hanya percepatan yang tegak lurus terhadap lintasan, yang menyebabkan arah kecepatan linear berubah-ubah. Sekarang mari kita tinjau percepatan ini.

PERCEPATAN SENTRIPETAL


Percepatan tangensial didefinisikan sebagai perbandingan perubahan kecepatan dengan selang waktu yang sangat singkat, secara matematis dirumuskan sebagai berikut :


Sekarang kita turunkan persamaan untuk menentukan besar percepatan sentripetal alias percepatan radial (aR)

Kita tulis semua kecepatan dengan v karena pada GMB kecepatan tangensial benda sama (v1 = v2 = v).

Benda yang melakukan gerakan dengan lintasan berbentuk lingkaran dengan jari-jari (r) dan laju tangensial tetap (v) mempunyai percepatan yang arahnya menuju pusat lingkaran dan besarnya adalah :

Berdasarkan persamaan percepatan sentripetal tersebut, terlihat bahwa nilai percepatan sentripetal bergantung pada kecepatan tangensial dan radius/jari-jari lintasan (lingkaran). Dengan demikian, semakin cepat laju gerakan melingkar, semakin cepat terjadi perubahan arah dan semakin besar radius, semakin lambat terjadi perubahan arah.

Arah vektor percepatan sentripetal selalu menuju ke pusat lingkaran, tetapi vektor kecepatan linear menuju arah gerak benda secara alami (lurus), sedangkan arah kecepatan sudut searah dengan putaran benda. Dengan demikian, vektor percepatan sentripetal dan kecepatan tangensial saling tegak lurus atau dengan kata lain pada Gerak Melingkar Beraturan arah percepatan dan kecepatan linear/tangensial tidak sama. Demikian juga arah percepatan sentripetal dan kecepatan sudut tidak sama karena arah percepatan sentripetal selalu menuju ke dalam/pusat lingkaran sedangkan arah kecepatan sudut sesuai dengan arah putaran benda (untuk kasus di atas searah dengan putaran jarum jam).

Kita dapat menyimpulkan bahwa dalam Gerak Melingkar Beraturan :

1. besar kecepatan linear/kecepatan tangensial adalah tetap, tetapi arah kecepatan linear selalu berubah setiap saat
2. kecepatan sudut (baik besar maupun arah) selalu tetap setiap saat
3. percepatan sudut maupun percepatan tangensial bernilai nol
4. dalam GMB hanya ada percepatan sentripetal

PERIODE DAN FREKUENSI

Gerak melingkar sering dijelaskan dalam frekuensi (f) sebagai jumlah putaran per detik. Periode (T) dari benda yang melakukan gerakan melingkar adalah waktu yang diperlukan untuk menyelesaikan satu putaran. Hubungan antara frekuensi dengan periode dinyatakan dengan persamaan di bawah ini :

Dalam satu putaran, benda menempuh lintasan linear sepanjang satu keliling lingkaran (2 phi r), di mana r merupakan jarak tepi lingkaran dengan pusat lingkaran. Kecepatan linear merupakan perbandingan antara panjang lintasan linear yang ditempuh benda dengan selang waktu tempuh. Secara matematis dirumuskan sebagai berikut :

Sekarang kita tulis kembali persamaan Gerak Melingkar Beraturan (GMB) yang telah kita turunkan di atas ke dalam tabel di bawah ini :

Persamaan fungsi Gerak Melingkar Beraturan (GMB)

Pada Gerak Melingkar Beraturan, kecepatan sudut selalu tetap (baik besar maupun arahnya), di mana kecepatan sudut awal sama dengan kecepatan sudut akhir. Karena selalu sama, maka kecepatan sudut sesaat sama dengan kecepatan sudut rata-rata.

Contoh Soal 1 :

Sebuah bola bermassa 200 gram diikat pada ujung sebuah tali dan diputar dengan kelajuan tetap sehingga gerakan bola tersebut membentuk lingkaran horisontal dengan radius 0,2 meter. Jika bola menempuh 10 putaran dalam 5 detik, berapakah percepatan sentripetalnya ?

Panduan Jawaban :

Percepatan sentripetal dirumuskan dengan persamaan :

Karena laju putaran bola belum diketahui, maka terlebih dahulu kita tentukan laju bola (v). Apabila bola menempuh 10 putaran dalam 5 detik maka satu putaran ditempuh dalam 2 detik, di mana ini merupakan periode putaran (T). Jarak lintasan yang ditempuh benda adalah keliling lingkaran = 2 phi r, di mana r = jari-jari/radius lingkaran. Dengan demikian, laju bola :

Contoh Soal 2 :

Satu kali mengorbit bumi, bulan memerlukan waktu 27,3 hari. Jari-jari orbit bulan 384.000 km, berapakah percepatan bulan terhadap bumi ? (catatan : dalam GMB hanya ada percepatan sentripetal, sehingga jika ditanyakan percepatan, maka yang dimaksudkan adalah percepatan sentripetal)

Panduan Jawaban :

Ketika mengorbit bumi satu kali, bulan menempuh jarak 2phi r, di mana r = 3,84 x 108 meter merupakan radius jalur lintasannya (lingkaran). Periode T dalam satuan sekon adalah T = (27,3 hari)(24 jam)(3600 s/jam) = 2,36 x 106 s. Dengan demikian, percepatan sentripetal bulan terhadap bumi adalah :

Latihan Soal 3 :

Valentino Rosi mengendarai motornya melewati suatu tikungan yang berbentuk setengah lingkaran yang memiliki radius 20 meter. Jika laju sepeda motor 20 m/s, berapakah percepatan sepeda motor (dan The Doctor) ?

Panduan Jawaban :

Percepatan sentripetal sepeda motor + The Doctor adalah :

HUKUM KEPLER ;D

HUKUM KEPLER

Karya Kepler sebagian dihasilkan dari data-data hasil pengamatan yang dikumpulkan Ticho Brahe mengenai posisi planet-planet dalam geraknya di luar angkasa. Hukum ini telah dicetuskan Kepler setengah abad sebelum Newton mengajukan ketiga Hukum-nya tentang gerak dan hukum gravitasi universal. Di antara hasil karya Kepler, terdapat tiga penemuan yang sekarang kita kenal sebagai Hukum Kepler mengenai gerak planet.


Hukum I Kepler
Lintasan setiap planet ketika mengelilingi matahari berbentuk elips, di mana matahari terletak pada salah satu fokusnya.
Kepler tidak mengetahui alasan mengapa planet bergerak dengan cara demikian. Ketika mulai tertarik dengan gerak planet-planet, Newton menemukan bahwa ternyata hukum-hukum Kepler ini bisa diturunkan secara matematis dari hukum gravitasi universal dan hukum gerak Newton. Newton juga menunjukkan bahwa di antara kemungkinan yang masuk akal mengenai hukum gravitasi, hanya satu yang berbanding terbalik dengan kuadrat jarak yang konsisten dengan Hukum Kepler.
Perhatikan orbit elips yang dijelaskan pada Hukum I Kepler. Dimensi paling panjang pada orbit elips disebut sumbu mayor alias sumbu utama, dengan setengah panjang a. Setengah panjang ini disebut sumbu semiutama alias semimayor (sambil lihat gambar di bawah ya).
F1 dan F2 adalah titik Fokus. Matahari berada pada F1 dan planet berada pada P. Tidak ada benda langit lainnya pada F2. Total jarak dari F1 ke P dan F2 ke P sama untuk semua titik dalam kurva elips. Jarak pusat elips (O) dan titik fokus (F1 dan F2) adalah ea, di mana e merupakan angka tak berdimensi yang besarnya berkisar antara 0 sampai 1, disebut juga eksentrisitas. Jika e = 0 maka elips berubah menjadi lingkaran. Kenyataanya, orbit planet berbentuk elips alias mendekati lingkaran. Dengan demikian besar eksentrisitas tidak pernah bernilai nol. Nilai e untuk orbit planet bumi adalah 0,017. Perihelion merupakan titik yang terdekat dengan matahari, sedangkan titik terjauh adalah aphelion.
Pada Persamaan Hukum Gravitasi Newton, telah kita pelajari bahwa gaya tarik gravitasi berbanding terbalik dengan kuadrat jarak (1/r2), di mana hal ini hanya bisa terjadi pada orbit yang berbentuk elips atau lingkaran saja.


Contoh soal Hukum I Kepler :
Komet Halley bergerak sepanjang orbit elips mengitari matahari. Pada perihelion, komet Halley berjarak 8,75 x107 km dari matahari, sedangkan pada aphelion berjarak 5,26 x 109 km dari matahari. Berapakah eksentrisitas dari orbit komet halley
Panduan jawaban :
Panjang sumbu utama sama dengan total jarak komet ke matahari ketika komet berada di perihelion dan aphelion.
Panjang sumbu utama adalah 2a, dengan demikian :
Pada Perihelion, jarak komet Halley dengan matahari diperoleh dari (sambil perhatikan gambar di atas) :
a – ea = a(1-e)
Jarak komet Halley dengan matahari ketika komet Halley berada pada perihelion adalah 8,75 x107 km. Dengan demikian, eksentrisitas komet Halley adalah :

Nilai eksentrisitas komet halley mendekati 1. Ini menunjukkan bahwa orbit halley sangat panjang….


Hukum II Kepler
Luas daerah yang disapu oleh garis antara matahari dengan planet adalah sama untuk setiap periode waktu yang sama.

l yang paling utama dalam Hukum II Kepler adalah kecepatan sektor mempunyai harga yang sama pada semua titik sepanjang orbit yang berbentuk elips.




Hukum III Kepler
Kuadrat waktu yang diperlukan oleh planet untuk menyelesaikan satu kali orbit sebanding dengan pangkat tiga jarak rata-rata planet-planet tersebut dari matahari.
Jika T1 dan T2 menyatakan periode dua planet, dan r1 dan r2 menyatakan jarak rata-rata mereka dari matahari, maka
Newton menunjukkan bahwa Hukum III Kepler juga bisa diturunkan secara matematis dari Hukum Gravitasi Universal dan Hukum Newton tentang gerak dan gerak melingkar. Sekarang mari kita tinjau Hukum III Kepler menggunakan pendekatan Newton.
Terlebih dahulu kita tinjau kasus khusus orbit lingkaran, yang merupakan kasus khusus dari orbit elips. Semoga dirimu belum melupakan Hukum Newton dan pelajaran Gerak Melingkar…
Sekarang kita masukan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :
m1 adalah massa planet, mM adalah massa matahari, r1 adalah jarak rata-rata planet dari matahari, v1 merupakan laju rata-rata planet pada orbitnya.
Waktu yang diperlukan sebuah planet untuk menyelesaikan satu orbit adalah T1, di mana jarak tempuhnya sama dengan keliling lingkaran, 2 phi r1. Dengan demikian, besar v1 adalah :
Misalnya persamaan 1 kita turunkan untuk planet venus (planet 1). Penurunan persamaan yang sama dapat digunakan untuk planet bumi (planet kedua).
T2 dan r2 adalah periode dan jari-jari orbit planet kedua. Sekarang coba anda perhatikan persamaan 1 dan persamaan 2. Perhatikan bahwa ruas kanan kedua persamaan memiliki nilai yang sama. Dengan demikian, jika kedua persamaan ini digabungkan, akan kita peroleh :
Persamaan ini adalah Hukum III Kepler…
Kita juga bisa menurunkan persamaaan untuk menghitung besarnya periode gerak planet (T) dengan cara lain. Pertama terlebih dahulu kita turunkan untuk kasus gerak melingkar.
Sebelumnya kita telah mensubtitusikan persamaan Hukum Gravitasi Newton dan percepatan sentripetal ke dalam persamaan Hukum II Newton :
Pada pembahasan mengenai gerak melingkar beraturan, kita mempelajari bahwa laju v adalah perbandingan jarak tempuh dalam satu kali putaran (2phir) dengan periode (waktu yang dibutuhkan untuk melakukan satu kali putaran), yang secara matematis dirumuskan sebagai berikut :
Pada persamaan ini tampak bahwa periode dalam orbit lingkaran sebanding dengan pangkat 3/2 dari jari-jari orbit. Newton menunjukkan bahwa hubungan ini juga berlaku untuk orbit elips, di mana jari-jari orbit lingkaran (r) diganti dengan setengah sumbu utama a

Dibaca secara perlahan-lahan sambil direnungkan

Hukum Newton :)

HUKUM NEWTON I
HUKUM NEWTON I disebut juga hukum kelembaman (Inersia).
Sifat lembam benda adalah sifat mempertahankan keadaannya, yaitu keadaan tetap diam atau keaduan tetap bergerak beraturan.
DEFINISI HUKUM NEWTON I :
Setiap benda akan tetap bergerak lurus beraturan atau tetap dalam keadaan diam jika tidak ada resultan
gaya (F) yang bekerja pada benda itu, jadi:
 F = 0 a = 0 karena v=0 (diam), atau v= konstan (GLB)

HUKUM NEWTON II
a = F/m
 F = m a
 F = jumlah gaya-gaya pada benda
m = massa benda
a = percepatan benda
Rumus ini sangat penting karena pada hampir semna persoalan gerak {mendatar/translasi (GLBB) dan melingkar (GMB/GMBB)} yang berhubungan dengan percepatan den massa benda dapat diselesaikan dengan rumus tersebut.

HUKUM NEWTON III

DEFINISI HUKUM NEWTON III:
Jika suatu benda mengerjakan gaya pada benda kedua maka benda kedua tersebut mengerjakan juga gaya pada benda pertama, yang besar gayanya = gaya yang diterima tetapi berlawanan arah. Perlu diperhatikan bahwa kedua gaya tersebut harus bekerja pada dua benda yang berlainan.
F aksi = - F reaksi
N dan T1 = aksi reaksi (bekerja pada dua benda)
T2 dan W = bukan aksi reaksi (bekerja pada tiga benda)

Minggu, 01 November 2009

GRAVITASI DAN GAYA NORMAL :))


1. GRAVITASI

Gravitasi adalah gaya tarik-menarik yang terjadi antara semua partikel yang mempunyai massa di alam semesta. Fisika modern mendeskripsikan gravitasi menggunakan Teori Relativitas Umum dari Einstein, namun hukum gravitasi universal Newton yang lebih sederhana merupakan hampiran yang cukup akurat dalam kebanyakan kasus.

Bumi yang memiliki massa yang sangat besar menghasilkan gaya gravitasi yang sangat besar untuk menarik benda-benda disekitarnya, termasuk makhluk hidup, dan benda benda yang ada di bumi. Gaya gravitasi ini juga menarik benda-benda yang ada diluar angkasa, seperti bulan, meteor, dan benda angkasa laiinnya, termasuk satelite buatan manusia.

Hukum gravitasi universal Newton dirumuskan sebagai berikut:

Setiap massa titik menarik semua massa titik lainnya dengan gaya segaris dengan garis yang menghubungkan kedua titik. Besar gaya tersebut berbanding lurus dengan perkalian kedua massa tersebut dan berbanding terbalik dengan kuadrat jarak antara kedua massa titik tersebut.

F = G \frac{m_1 m_2}{r^2}

F adalah besar dari gaya gravitasi antara kedua massa titik tersebut diukur dalam satuan Newton (N)

G adalah konstanta gravitasi, besarnya sama dengan 6,67 × 10−11 N m2 kg−2.

m1 adalah besar massa titik pertama, satuannya dalam kilogram (Kg)

m2 adalah besar massa titik kedua, satuannya dalam kilogram (Kg)

r adalah jarak antara kedua massa titik, satuannya dalam meter (M)

Percepatan gravitasi di permukaan bumi secara rata-rata bernilai 9,8 m/s2. kenyataannya, nilai gravitasi (g) sedikit berubah dari satu titik ke titik lain di permukaan bumi, dari kira-kira 9, 78 m/s2 sampai 9,82 m/s2. beberapa faktor yang mempengaruhi hal tersebut antara lain : pertama, bumi kita tidak benar-benar bulat, percepatan gravitasi bergantung pada jaraknya dari pusat bumi (planet); kedua, percepatan gravitasi tergantung dari jaraknya terhadap permukaan bumi. Semakin tinggi sebuah benda dari permukaan bumi, semakin kecil percepatan gravitasi; ketiga, percepatan gravitasi bergantung pada planet tempat benda berada, di mana setiap planet, satelit atau benda angkasa lainnya memiliki gravitasi yang berbeda.

Mengapa Gravitasi di permukaan bumi berbeda-beda ? mengapa percepatan gravitasi di setiap planet berbeda ? untuk mengetahui hal ini, anda perlu mengetahui apa sebenarnya gravitasi atau apa yang membuat bumi dan benda angkasa lainnya, termasuk bulan memiliki gravitasi. Mengenai hal ini selengkapnya akan kita pelajari pada pokok bahasan teori relativitas umum eyang Einstein. Pada kesempatan ini Gurumuda ingin menjawab rasa penasaran anda, seandainya anda ingin mengetahui apa itu gravitasi sesungguhnya sehingga setiap benda selalu jatuh ke permukaan bumi.

Untuk memudahkan pemahaman anda mengenai gravitasi, bayangkanlah anda dan teman dekat atau pacar anda yang cantik+ merentangkan sebuah kain (sebaiknya kain tersebut terbuat dari karet). Sekarang, letakan sebuah benda, dari ukuran terkecil hingga ukuran besar di atas kain atau lembaran karet tersebut. Apa yang anda amati ? jika yang anda letakan adalah sebuah kelereng, maka lekukan yang terbentuk kecil, tetapi jika anda meletakan sebongkah batu yang berukuran besar maka lekukan pada kain atau lembaran karet tersebut sangat besar. nah, sekarang, letakan sebuah kerikil atau batu kecil pada pinggir kain tersebut. Apa yang anda amati ? kerikil atau batu kecil tersebut akan terperosok alias jatuh menuju pusat lekukan, di mana batu besar yang anda letakan pada kain berada. Setiap benda angkasa yang bermassa (termasuk bumi) selalu membuat lekukan dalam ruang waktu. hal ini yang menyebabkan setiap benda seolah-olah ditarik bumi atau benda angkasa lainnya. Sebenarnya ini disebabkan oleh efek lekukan, sebagaimana ilustrasi kain karet dan batu di atas. Selengkapnya anda pelajari pada pembahasan mengenai Teori Relativitas Umum (kelas XII).

Pada pembahasan mengenai Gerak Jatuh Bebas, kita telah belajar bahwa benda-benda yang dijatuhkan dekat permukaan bumi akan jatuh dengan percepatan yang sama, g (percepatan gravitasi), seandainya hambatan udara diabaikan. Gaya yang menyebabkan percepatan ini disebut gaya gravitasi. Gaya gravitasi bekerja pada sebuah benda ketika benda tersebut jatuh.

Kita terapkan hukum II Newton untuk gaya gravitasi dan untuk percepatan a, kita ganti dengan percepatan gravitasi (g). ingat kembali pelajaran Gerak Jatuh Bebas. Benda yang jatuh hanya dipengaruhi oleh percepatan gravitasi. Dengan demikian Gaya Gravitasi yang pada sebuah benda, FG, yang besarnya disebut berat, dapat ditulis sebagai :

FG = mg

Arah gaya ini ke bawah, menuju ke pusat bumi. Persamaan ini sama dengan w = mg, seperti yang sudah kita pelajari di atas, karena berat adalah gaya gravitasi yang bekerja pada sebuah benda.

Ketika benda berada dalam keadaan diam di permukaan bumi, gaya gravitasi yang ada pada benda tersebut tidak hilang. Untuk membuktikaan hal ini, kita bisa mengukur benda tersebut dengan neraca pegas dan membandingkannya dengan hasil perhitungan kita (FG = m g atau w = mg). Lalu mengapa benda tidak bergerak ? Dari hukum II Newton, gaya total untuk benda yang diam adalah nol. Jika demikian, pasti ada gaya lain yang bekerja pada benda tersebut, untuk mengimbangi gaya gravitasi. Gaya apakah itu ?



2. GAYA NORMAL

GAYA NORMAL

Ketika kita meletakan sebuah kotak di atas meja, berat kotak tersebut menekan meja ke bawah dan sebaliknya meja membalas dengan memberikan gaya ke atas (lihat gambar di bawah). Gaya yang diberikan oleh meja bisa disebut gaya kontak, karena gaya tersebut terjadi karena adanya sentuhan antara kotak dan meja. Sebuah gaya kontak yang tegak lurus terhadap permukaan kontak disebut Gaya Normal (normal berarti tegak lurus), dan mempunyai Lambang FN atau bisa ditulis N.


Kedua gaya yang ditunjukkan pada gambar diatas bekerja pada kotak sehingga kotak tetap diam. Selisih kedua gaya tersebut (gaya total) pasti nol, sehinga kotak tersebut diam/tidak jatuh ke tanah. FG atau w dan N pasti memiliki besar yang sama dan memiliki arah yang berlawanan, sehingga gaya total atau selisih kedua gaya tersebut nol. Gaya-gaya tersebut bukan gaya aksi reaksi yang dijelaskan pada Hukum III Newton. Ingat bahwa gaya aksi reaksi bekerja pada benda yang berbeda, sedangkan kedua gaya di atas (Gaya berat dan Gaya Normal) bekerja pada benda yang sama, yakni kotak. Perhatikan gambar di atas secara saksama. Gaya berat benda yang menekan meja digambarkan pada titik pusat kotak alias berada di tengah-tengah kotak. Sedangkan Gaya Normal digambarkan pada permukaan sentuh antara kotak dan meja.

Lalu apa gaya reaksinya ? gaya ke atas yang diberikan oleh meja terhadap kotak adalah N, disebut gaya aksi. Gaya reaksi diberikan oleh kotak kepada meja, yakni N’, sebagaimana diperlihatkan pada gambar di bawah. Perhatikan baik-baik posisi tanda panah pada gambar. Tanda panah yang mewakili N’ digambarkan pada meja, bukan pada kotak. Panjang tanda panah sama, hal ini menunjukkan bahwa besarnya gaya sama, hanya berlawanan arah (aksi = – reaksi). Mengenai aksi-reaksi selengkapnya dipelajari pada Pokok Bahasan Hukum III Newton





GERAK LURUS ;)

Gerak lurus adalah gerak suatu obyek yang lintasannya berupa garis lurus. Dapat pula jenis gerak ini disebut sebagai suatu translasi beraturan. Pada rentang waktu yang sama terjadi perpindahan yang besarnya sama.


Gerak lurus dapat dikelompokkan menjadi gerak lurus beraturan dan gerak lurus berubah beraturan yang dibedakan dengan ada dan tidaknya percepatan.

Gerak lurus beraturan

Gerak lurus beraturan (GLB) adalah gerak lurus suatu obyek, dimana dalam gerak ini kecepatannya tetap atau tanpa percepatan, sehingga jarak yang ditempuh dalam gerak lurus beraturan adalah kelajuan kali waktu.

s = v \cdot t \!

dengan arti dan satuan dalam SI:

  • s = jarak tempuh (m)
  • v = kecepatan (m/s)
  • t = waktu (s)

Gerak lurus beraturan (GLB) adalah gerak benda dalam lintasan garis lurus dengan kecepatan tetap. Untuk lebih memahaminya, amati grafik berikut!

Gambar 1.7: Grafik v - t untuk GLB.

Grafik di atas menyatakan hubungan antara kecepatan (v) dan waktu tempuh (t) suatu benda yang bergerak lurus. Berdasarkan grafik tersebut cobalah Anda tentukan berapa besar kecepatan benda pada saat t = 0 s, t = 1 s, t = 2 s, t = 3 s?

Ya!, Anda benar! Tampak dari grafik pada gambar 6, kecepatan benda sama dari waktu ke waktu yakni 5 m/s.
Semua benda yang bergerak lurus beraturan akan memiliki grafik v - t yang bentuknya seperti gambar 6 itu. Sekarang, dapatkah Anda menghitung berapa jarak yang ditempuh oleh benda dalam waktu 3 s?

Anda dapat menghitung jarak yang ditempuh oleh benda dengan cara menghitung luas daerah di bawah kurva bila diketahui grafik (v-t)

Jarak yang ditempuh = luas daerah yang diarsir pada grafik v - t.


Tentu saja satuan jarak adalah satuan panjang, bukan satuan luas. Berdasarkan gambar 1.7 di atas, jarak yang ditempuh benda = 15 m.

Cara lain menghitung jarak tempuh adalah dengan menggunakan persamaan GLB. Telah Anda ketahui bahwa kecepatan pada GLB dirumuskan:

atau

s = v . t
(Persamaan GLB)

Keterangan:
s = jarak tempuh (m)
v = kecepatan (m/s)
t = waktu tempuh (s)

Dari gambar 1.8,

v = 5 m/s, sedangkan t = 3 s, sehingga jarak
s = v . t
s = 5 x 3 = 15 m

Persamaan GLB di atas, berlaku bila gerak benda memenuhi grafik seperti pada gambar 1.8. Pada grafik tersebut terlihat bahwa pada saat t = 0 s, maka v = 0. Artinya, pada mulanya benda diam, baru kemudian bergerak dengan kecepatan 5 m/s. Padahal dapat saja terjadi bahwa saat awal kita amati benda sudah dalam keadaan bergerak, sehingga benda telah memiliki posisi awal so. Untuk keadaan ini, maka persamaan GLB sedikit mengalami perubahan menjadi,

s = so + v.t

Persamaan GLB untuk benda yang sudah bergerak sejak awal pengamatan.

Dengan so menyatakan posisi awal benda dalam satuan meter. Kita akan kembali ke sini setelah Anda ikuti uraian berikut.

Di samping grafik v - t di atas, pada gerak lurus terdapat juga grafik s-t, yakni grafik yang menyatakan hubungan antara jarak tempuh (s) dan waktu tempuh (t) seperti pada gambar 1.9 di bawah.



Gerak lurus berubah beraturan

Gerak lurus berubah beraturan (GLBB) adalah gerak lurus suatu obyek, di mana kecepatannya berubah terhadap waktu akibat adanya percepatan yang tetap. Akibat adanya percepatan rumus jarak yang ditempuh tidak lagi linier melainkan kuadratik.

v = v_0 + a \cdot t \!

s = v_0 \cdot t +  \frac{1}{2} a \cdot t^2 \!

dengan arti dan satuan dalam SI:

  • v0 = kecepatan mula-mula (m/s)
  • a = percepatan (m/s2)
  • t = waktu (s)
  • s = Jarak tempuh/perpindahan (m)


sumber : www.google.com